
Gist: A Solver for Probabilistic Games

Krishnendu Chatterjee1, Thomas A. Henzinger1, Barbara Jobstmann2, and
Arjun Radhakrishna1

1 IST Austria (Institute of Science and Technology Austria)
2 CNRS/Verimag, France

Abstract. Gist is a tool that (a) solves the qualitative analysis problem
of turn-based probabilistic games with ω-regular objectives; and (b) syn-
thesizes reasonable environment assumptions for synthesis of unrealizable
specifications. Our tool provides the first and efficient implementations
of several reduction-based techniques to solve turn-based probabilistic
games, and uses the analysis of turn-based probabilistic games for syn-
thesizing environment assumptions for unrealizable specifications.

1 Introduction

Gist (Game solver from IST) is a tool for (a) qualitative analysis of turn-
based probabilistic games (21/2-player games) with ω-regular objectives, and
(b) computing environment assumptions for synthesis of unrealizable specifi-
cations. The class of 21/2-player games arise in several important applications
related to verification and synthesis of reactive systems. Some key applications
are: (a) synthesis of stochastic reactive systems; (b) verification of probabilistic
systems; and (c) synthesis of unrealizable specifications. We believe that our
tool will be useful for the above applications. Gist is available for download at
http://pub.ist.ac.at/gist.

2 1/2-player games. 21/2-player games are played on a graph by two players
along with probabilistic transitions. We consider ω-regular objectives over infi-
nite paths specified by parity, Rabin and Streett (strong fairness) conditions that
can express all ω-regular properties such as safety, reachability, liveness, fairness,
and most properties commonly used in verification. Given a game and an objec-
tive, our tool determines whether the first player has a strategy to ensure that
the objective is satisfied with probability 1, and if so, it constructs such a wit-
ness strategy. Our tool provides the first implementation of qualitative analysis
(probability 1 winning) of 21/2-player games with ω-regular objectives.

Synthesis of environment assumptions. The synthesis problem asks to con-
struct a finite-state reactive system from an ω-regular specification. In practice,
initial specifications are often unrealizable, which means that there is no system
that implements the specification. A common reason for unrealizability is that
assumptions on the environment of the system are incomplete. The problem of
correcting an unrealizable specification Ψ by computing an environment assump-
tion Φ such that the new specification Φ → Ψ is realizable was studied in [2].

This research was supported by the European Union project COMBEST and the
European Network of Excellence ArtistDesign..



The work [2] constructs an assumption Φ that constrains only the environment
and is as weak as possible. Our tool implements the algorithms of [2]. We believe
our implementation will be useful in analysis of realizability of specifications and
computation of assumptions for unrealizable specifications.

2 Definitions

Game graphs. A turn-based probabilistic game graph (21/2-player game graph)
G = ((S, E), (S0, S1, SP ), δ) consists of a directed graph (S, E), a partition (S0,
S1,SP ) of the finite set S of states, and a probabilistic transition function δ:
SP → D(S), where D(S) denotes the set of probability distributions over the
state space S. The states in S0 are the player-0 states, where player 0 decides the
successor state; the states in S1 are the player-1 states, where player 1 decides
the successor state; and the states in SP are the probabilistic states, where the
successor state is chosen according to the probabilistic transition function δ.
2-player game graphs are a special case where SP = ∅.

Objectives. We consider the three canonical forms of ω-regular objectives:
Streett and its dual Rabin objectives; and parity objectives. The Streett ob-
jective consists of d request-response pairs { (Q1, R1), (Q2, R2), . . . , (Qd, Rd) }
where Qi denotes a request and Ri denotes the corresponding response (each Qi

and Ri are subsets of the state space). The objective requires that if a request Qi

happens infinitely often, then the corresponding response must happen infinitely
often. The Rabin objective is its dual. The parity objective is a special case of
Streett objectives where Q1 ⊂ R1 ⊂ Q2 ⊂ R2 ⊂ Q3 ⊂ · · · ⊂ Qd ⊂ Rd.

Qualitative analysis. The qualitative analysis for 21/2-player games is as fol-
lows: the input is a 21/2-player game graph, and an objective Φ (Streett, Rabin or
parity objective), and the output is the set of states such that player 0 can ensure
Φ with probability 1. For detailed description of game graphs, plays, strategies,
objectives and notion of winning see [1]. We focus on qualitative analysis because:
a) In applications like synthesis qualitative analysis is more relevant: the goal is
to synthesize a system that behaves correctly with probability 1; (b) Qualita-
tive analysis for probabilistic games is independent of the precise probabilities,
and thus robust with imprecision in the exact probabilities (hence resilient to
probabilistic modeling errors). The qualitative analysis can be done with dis-
crete graph theoretic algorithms. Thus, qualitative analysis is more robust and
efficient, and our tools implements these efficient algorithms.

3 Tool Implementation

Qualitative analysis of 2 1/2-player games. Our tool presents the first imple-
mentation for the qualitative analysis of 21/2-player games with Streett, Rabin
and parity objectives. We have implemented the linear-time reduction for qual-
itative analysis of 21/2-player Rabin and Streett games to 2-player Rabin and
Streett games of [1], and the linear-time reduction for 21/2-player parity games
to 2-player parity games of [4]. The 2-player Rabin and Streett games are solved
by reducing them to the 2-player parity games using the LAR construction [5].
The 2-player parity games are solved using the tool PGSolver [6].



Environment assumptions for synthesis. Our tool implements a two-step
algorithm for computing the environment assumptions as presented in [2]. The
algorithm operates on the game graph that is used to answer the realizability
question. First, a safety assumption that removes a minimal set of environment
edges from the graph is computed. Second, a fairness assumption that puts
fairness conditions on some of the remaining environment edges is computed. The
problem of finding a minimal set of fair edges is computationally hard [2], and a
reduction to 21/2-player games was presented in [2] to compute a locally minimal
fairness assumption. The details of the implementation are as follows: given an
LTL formula φ, the conversion to an equivalent deterministic parity automaton is
achieved through GOAL [7]. Our tool then converts the parity automaton into
a 2-player parity game by splitting the states and transitions based on input
and output symbols. Our tool then computes the safety assumption by solving
a safety model-checking problem. The computation of the fairness assumption
is achieved in the following steps:

– Convert the parity game with fairness assumption into a 21/2-player game.
– Solve the 21/2-player game (using our tool) to check whether the assumption

is sufficient (if so, go to the previous step with a weaker fairness assumption).

The synthesized system is obtained from a witness strategy of the parity game.
The flow is illustrated in Figure 1.

LTL formula Det. Par. Aut. Synthesis Game

Synthesized System 21/2-player game Safe Synth. Game

GOAL

Assumption not locally minimal

Fig. 1. The flow of the tool for computation of environment assumptions

We illustrate, how our tool works, on a simple example. Consider the LTL
formula Φ = GF (g)∧G(c → ¬g), where G and F denote globally and eventually,
respectively. The specification says that we want to see infinitely many grants (g),
but when we receive a cancel (c) we are not allowed to give a grant. From
Φ our tool constructs a deterministic parity automaton that accepts exactly
the words that satisfies Φ. The parity automaton is then converted into the
parity game shown in Figure 2(a). We use 2 to represent player-0 states and
3 to represent player-1 states. environment cannot force the play outside the
cooperative winning region. Now, we are searching for a locally minimal fairness
assumption by reducing a game with fairness assumptions on edges to a 21/2-
player parity game (see [2]). If the initial state in the 21/2-player game is winning
with probability 1 for player 0, then the assumption is sufficient. Figure 2(b)
illustrates the 21/2-player game obtained with a fairness assumption on the edge
(0, 4). The © state is a probabilistic state with uniform distribution over its
successors. The assumption on edge (0, 4) is the minimal fairness assumption
for the example. From this, our tool extract an automaton representing the
environment assumption. For the example, we obtain an automaton equivalent



1 4 0 3 2 5
c

¬g¬c

¬g g
c

g

¬c

T

T
1 4 0 0 3 2 5

Fig. 2. (a) Parity game with fairness assumption (b) Equivalent 21/2-player game

to G(c → ¬g) → GF (¬c). The tool also constructs a system that implements
the specification under this assumption. The constructed system sets g high
whenever c is low and vice-versa.

Performance of Gist. Our implementation of reduction of 21/2-player games
to 2-player games is linear time and efficient, and the computationally expensive
step is solving 2-player games. For qualitative analysis of 21/2-player games, Gist

can handle game graphs of size that can be typically handled by tools solving
2-player games. Typical run-times for qualitative analysis of 21/2-player parity
games of various sizes are summarized in Table 3. The games used were generated
using the benchmark tools of PGSolver and converting one-tenth fraction of the
states into probabilistic states (further experimental results in [3]). For synthesis

States Edges Runtime (sec.)
Avg. Best Worst

1000 5000 1.17 0.63 1.59
10000 50000 51.43 39.38 62.61
50000 250000 2513.18 2063.40 2711.23

Table 1. Runtimes for solving 21/2-player parity games

of environment assumptions, the expensive step is the reduction of LTL formula
to deterministic parity automata. Our tool can handle formulas that are handled
by classical tools for translation of LTL formula to deterministic parity automata.

Other features of Gist. Our tool is compatible with several other game solving
and synthesis tools: Gist is compatible with PGSolver and GOAL. Our tool
provides a graphical interface to describe games and automata, and thus can
also be used as a front-end to PGSolver to graphically describe games.

References

1. K. Chatterjee. Stochastic ω-Regular Games. PhD thesis, UC Berkeley, 2007.
2. K. Chatterjee, T. A. Henzinger, and B. Jobstmann. Environment assumptions for

synthesis. In CONCUR, 2008.
3. K. Chatterjee, T. A. Henzinger, B. Jobstmann, and A. Radhakrishna. Gist: A solver

for probabilistic games. CoRR, abs/1004.2367, 2010.
4. K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quantitative stochastic parity

games. In SODA, 2004.
5. Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC, 1982.
6. M. Lange and O. Friedmann. The pgsolver collection of parity game solvers. Tech-

nical report, Institut für Informatik, Ludwig-Maximilians-Universität, 2009.
7. Y. Tsay, Y. Chen, M. Tsai, W. Chan, and C. Luo. Goal extended: Towards a

research tool for omega automata and temporal logic. In TACAS, 2008.


