
Battery Transition Systems ∗

Udi Boker
The Interdisciplinary Center, Herzliya,

Israel

Thomas A. Henzinger
IST Austria, Klosterneuburg, Austria

Arjun Radhakrishna
IST Austria, Klosterneuburg, Austria

Abstract
The analysis of the energy consumption of software is an impor-
tant goal for quantitative formal methods. Current methods, us-
ing weighted transition systems or energy games, model the en-
ergy source as an ideal resource whose status is characterized by
one number, namely the amount of remaining energy. Real batter-
ies, however, exhibit behaviors that can deviate substantially from
an ideal energy resource. Based on a discretization of a standard
continuous battery model, we introduce battery transition systems.
In this model, a battery is viewed as consisting of two parts – the
available-charge tank and the bound-charge tank. Any charge or
discharge is applied to the available-charge tank. Over time, the
energy from each tank diffuses to the other tank.

Battery transition systems are infinite state systems that, being
not well-structured, fall into no decidable class that is known to
us. Nonetheless, we are able to prove that the ω-regular model-
checking problem is decidable for battery transition systems. We
also present a case study on the verification of control programs for
energy-constrained semi-autonomous robots.

Categories and Subject Descriptors Theory of computation
[Logic]: Verification by model checking

General Terms Theory, Verification

Keywords Battery, Transition systems, energy, model checking

1. Introduction
Systems with limited energy resources, such as mobile devices or
electric cars, have become ubiquitous in everyday life. In accor-
dance, there is a growing attention to the formal modeling of such
systems and the analysis of their behavior. These systems are com-
monly modeled as weighted transition systems, where the states of
the transition system represent the system configurations, the tran-
sitions represent the possible operations, and the weights on the
transitions correspond to the energy consumed (negative value) or
added (positive value) during the operation. In recent literature (for
example, [7, 8, 19]), weighted transition systems have been ana-
lyzed with respect to various problems, such as finite-automaton
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emptiness problem (starting from a given initial energy, can a spe-
cific configuration be reached while keeping the energy positive in
all intermediate steps?), and Büchi emptiness problem (can a spe-
cific configuration be visited repeatedly, while keeping the energy
positive?).

In all these works, the energy-resource is idealized. In partic-
ular, it is assumed that its status can be completely characterized
by one number, namely the amount of remaining energy. However,
physical systems with energy restrictions often use batteries, which
are far from an ideal-energy source. One such non-ideal behavior of
a battery behavior is the “recovery effect”, where the available en-
ergy at certain times is smaller than the sum of energies consumed
and charged. Intuitively, the recovery effect is a result of the fact
that energy is consumed from the edge of the battery, while the total
charge is spread across the entire battery. When the consumption is
high, additional time may be required until the charge diffuses from
the inside of the battery to its edge, during which period there is no
available energy, possibly failing the required operation.

The recovery effect is often noticed in our daily usage of
battery-powered systems, for example mobile phones – a phone
might shutdown due to an “out of power” condition, but then be-
come live again after an idle period.

We aim to formally model such energy systems with non-ideal
resources. We define a “battery transition system” (BTS), where
the system is viewed as a weighted transition system, as is stan-
dard. However, the semantics of its possible traces is specified dif-
ferently, to capture non-ideal behaviors. The semantics we specify
for BTSs correspond to a discretization of a well-known battery
model – the kinetic battery model (KiBaM) [20]. There are various
battery models in the literature, admitting various accuracies and
complexities, among which the KiBaM model is a good choice for
the purpose of properly analyzing systems with the recovery effect
[17]. We elaborate, in Section 2, on various battery models, and
explain the derivation of BTS semantics from the KiBaM model.

Semantics. The status of the battery in a BTS is a pair (x, y),
where x represents the available charge (available for immediate
usage) and y the bound charge (internal charge in a battery that is
not immediately available). During each transition, some amount of
charge diffuses between x and y. The weight of the transition (say
w) affects only x in the current step. The diffusion rate depends
on the difference between x and y, and on two constants of the
battery: a width constant c ∈ R with 0 < c < 1, and a diffusion
constant k ∈ R with 0 < k < c(1 − c). Formally, making a
transition of weight w from a battery status (x, y), results in the
battery status (x′, y′), where x′ = x − k · (x

c
− y

1−c ) + w and
y′ = y + k · (x

c
− y

1−c ). The value k · (x
c
− y

1−c ) represents the
amount of charge diffused between x and y. The above transition is
legal if the available charge x remains positive after the transition.

The mathematical properties of a BTS are shown to be inher-
ently different from those of a simple-energy transition system
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Figure 1. In the battery system B1, a trace reaching the state s1

must make a cycle with total negative energy. In B2, an illegal trace
must make different choices at different visits in s0.

(where only the value of x+y is considered), as illustrated in Fig. 1:
Considering the system B1 as a simple-energy system, where only
the total energy should remain positive, s1 is directly reachable
from s0, and the cycle s0 → s2 → s3 → s0 is completely useless.
On the other hand, viewing B1 as a BTS, in order to go from state
s0 to s1, counterintuitively, a legal trace must first take the cycle
through s2 and s3. Though decreasing the total energy, the cycle
temporarily increases the available energy, allowing the transition
to s1. Furthermore, it is known that a simple-energy system (even
with multi-dimension energies) admits an illegal trace if and only
if it admits a memoryless illegal trace (always making the same
choice at each state) [8]. However, an illegal trace in the system B2

of Fig. 1 must make different choices at different visits in state s0

(Theorem 3).

Model checking. We consider the finite-automaton, Büchi, and
Streett emptiness problems for a BTS; these problems are central to
the model checking of systems with no fairness constraints, weak
fairness constraints, and strong fairness constraints, respectively.

As BTSs are infinite-state systems, it is natural to ask if they fall
into a known, tractable, class of infinite state systems. For exam-
ple, standard model-checking algorithms exist for well-structured
transition systems (e.g., lossy channel systems, timed automata [2],
etc), where a well-quasi ordering can be defined on the states of the
infinite systems, and this ordering is compatible with the transition
relation of the system. However, for BTSs, we can show that the
infinite sequence (1, 1), ( 3
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tery statuses is monotonically decreasing with respect to any or-
dering that is compatible with transitions. Intuitively, this sequence
contains battery statuses that have equal total charge, but strictly
decreasing available charge. This implies that model-checking al-
gorithms from the domain of well-structured transitions systems do
not apply directly to BTS.

We solve the finite-automaton emptiness problem by building a
forward reachability tree, along the lines of the Karp-Miller tree for
Petri nets [11]. There, using the well-structured properties of Petri-
nets, the Karp-Miller tree is shown to be a finite summarization of
all reachable states, despite there being infinitely-many reachable
states. A BTS is not well-structured, yet we are able to generate a
finite “summary tree”, having all the reachability data, by proving
the following key observations: 1. Once the total energy in a bat-
tery status is high-enough, the problem can be reduced to simple-
energy reachability; 2. Considering some characteristic properties
of battery statuses allows to define a simulation-compatible total
ordering between statuses having the same total energy; and 3. Re-
peating a cycle whose total energy sums to 0 makes the battery
status converge monotonically to a limit value independent of the

initial status. Despite the fact that the above ordering is not well-
founded, i.e., there may be infinite chains, the last observation lets
us take limits of infinite chains while constructing the reachability
tree.

In simple-energy systems, extending the finite automaton empti-
ness algorithm to a Büchi emptiness algorithm is straightforward –
checking whether there is a reachable Büchi state that has a cycle
back to itself, such that the sum of weights on the cycle is non-
negative. In a BTS, such a simple solution does not work – a cycle
that does not decrease the total energy might still fail the process
after finitely many iterations, as the available charge can slightly
decreases on every iteration. A simple modification, seeking cycles
that do not decrease both the total and the available energies is too
restrictive, as the available charge may still converge to a positive
value. We solve the Büchi emptiness problem by showing that if
there exists an accepted trace, there also exists a lasso-shaped ac-
cepted trace having one of two special forms. These forms concern
the way that the available charge changes along the cycle. By a del-
icate analysis of the reachability tree, we then solve the question
of whether the transition system allows for a trace in one of these
special forms. The Streett emptiness problem is solved similarly,
by using a small extension of the Büchi emptiness algorithm.

We show that our algorithms for the finite-automaton, Büchi,
and Streett emptiness problems are in PSPACE with respect to the
number of states in the transition system and a unary representation
of the weights. If weights are represented in binary, or if the battery
constants are arbitrarily small and represented in binary, the space
complexity grows exponentially.

Case study: Robot control. We examine a semi-autonomous robot
control in an energy-constrained environment. We present a small
programming language for robot-controllers and define quantitative
battery-based semantics for controllers written in that language. We
solve the ω-regular model-checking problem for programs written
in this language, using our results on battery transition systems. We
demonstrate the inadequacy of standard quantitative verification
techniques, where the battery is viewed as an ideal energy resource
– they might affirm, for example, that the robot can reach some
target locations, while taking into account the non-ideal behavior
of its battery, it cannot.

Related work. Batteries are involved devices, exhibiting various
different phenomena. Accordingly, there are many different works
considering these aspects, for example scheduling the load among
several batteries [4, 9, 16, 18], optimizing the lifetime of a battery
with respect to the “cycle aging effect” [1], analyzing the thermal
effects, and more.

To the best of our knowledge, this is the first work to formally
analyze an energy system with a non-ideal energy source. Previous
work has either considered ideal energy sources (for example, [8])
or provides approximations for the battery life-time with respect to
various discharge scenarios (for example, [16, 17]).

Our finite-automaton emptiness algorithm follows the approach
taken in the Karp-Miller tree [11] which can be used in general for
well-structured transition systems [12]. However, our systems are
not well-structured and a naive application of this technique does
not entail termination of algorithms. We use ideas from flattable
systems [3] and additional analysis of BTSs to produce a terminat-
ing version of these algorithms. In particular, we also use an intri-
cate analysis of BTSs to get an algorithm for deciding Büchi and
Streett properties. This kind of analysis is not possible for general
flattable systems.

2. Battery Models
We provide a short description of how batteries are modeled in the
literature, and explain how we derive our formal model of a battery.



A battery consists of one or more electrochemical cells, each
of which contain a negative electrode (anode), a positive electrode
(cathode), and a separator between them. During discharge and
recharge, electrons move through the external circuit, while chem-
ical reaction produces or consumes chemical energy inside the bat-
tery. For example, during discharge in lithium-ion (Li-ion) batter-
ies, positive lithium ions move from the anode to the cathode, while
the reverse occurs during recharge (see Fig. 2).
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Figure 2. Schematic of a lithium-ion (Li-ion) battery.
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Figure 3. Concentration of electroactive species along the battery,
following a discharge and a recovery phase.

Batteries of all types have a “recovery effect”, meaning that
the chemical reaction inside the battery does not keep up with the
rate of the external activity. Internally, in Li-ion batteries, the con-
centration of the electroactive species near the electrodes becomes
smaller than their concentration in the interior of the battery. When
the battery has low load for some time, the ions have enough time
to diffuse to the electrodes, and charge recovery takes place (see
Fig. 3). The well-known symptom of this is that a battery might
be “empty” after some usage, but then becomes “charged” after an
idle period.

There are many battery models modeling various aspects of a
real battery. The most accurate ones model the electrochemical re-
actions in detail [5, 10, 13, 21]. Though highly accurate, they re-
quire configuration of many (usually around 50) parameters, mak-
ing them difficult to analyze. Another approach taken is to model
the electrical properties of the battery using voltage sources, resis-
tors, and other elements [14, 15]. These approximate battery volt-
age behavior well, but their modeling of the available battery ca-
pacity is inaccurate. A third class consists of the analytical models
that describe the battery at a high abstraction level, modeling only
its major properties by means of a few equations. The dominant
models of this class are the kinetic battery model [20], and the dif-
fusion model [22]. A detailed description of the various models can
be found in [16, 17].

The possibly simplest, yet useful, model that handles the recov-
ery effect is the kinetic battery model (KiBaM) [20]. While being
originally developed for Lead-Acid batteries to model both battery
capacity and battery voltage, its capacity modeling was found to be
a good approximation even for more modern batteries such as the
Li-ion battery. In [16, 17], it was theoretically shown that KiBaM
is a first order approximation of the diffusion model, which was
designed for Li-ion batteries. In addition, their experimental results
show that it has up to 7 percent deviation from the accurate electro-
chemical models.
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Figure 4. Kinetic battery model (KiBaM).

We concentrate on a battery’s available capacity, and hence,
adopt the KiBaM model. In this model, the battery charge is dis-
tributed over two tanks: the available-charge tank, denoted x, of
width c ∈ (0, 1), and the bound-charge tank, denoted y, of width
1 − c (see Fig. 4). The external current gets electrons only from
the available-charge tank, whereas electrons from the bound-charge
tank flow to the available-charge tank. When recharging, the re-
verse process occurs, electrons are added directly to the available-
charge tank, from there they flows to the bound-charge tank. The
charge flows between the tanks through a “valve” with a fixed con-
ductance p. The parameter p has the dimension 1/time and in-
fluences the rate at which the charge can flow between the two
tanks. This rate is also proportional to the height difference be-
tween the two tanks. If the heights are given by hx = x/c and
hy = y/(1 − c), and the current load by w(t), the charge in the
tank over time behaves according to the following system of differ-
ential equations [20]:

dx

dt
= −w(t)− p(hx − hy);

dy

dt
= p(hx − hy) (1)

with initial conditions x(0) = c ·C and y(0) = (1− c) ·C, where
C is the total battery capacity. The battery cannot supply charge
when there is no charge left in the available-charge tank.

We are interested in calculating the battery status along a
discrete-time transition system, thus consider the equations (1) for
fixed time steps. We get the following equations:

xi+1 = xi−wi−k(hxi−hyi); yi+1 = yi+k(hxi−hyi) (2)

where xi and yi are the values of x and y before the time step i,
respectively, wi is the total load on the battery at time step i, and
k = p× (length of a time step). The smaller the time steps are, the
smaller k is, and the more accurate the discretization is.

We further need to ensure that the discretization does not intro-
duce undesirable behaviours. In Eq. 1 if hx > hy and w(t) is 0,
the relation hx > hy keeps holding. We should ensure this in the
discrete model, i.e., if hxi > hyi andwi = 0, then it cannot be that
hxi+1 ≤ hyi+1 .

Formalizing the above requirement, we have

hxi+1 =
xi+1

c
=
xi − 0− k(hxi − hyi)

c
= hxi −

k(hxi − hyi)
c

;

hyi+1 =
yi+1

1− c =
yi + k(hxi − hyi)

1− c = hyi +
k(hxi − hyi)

1− c .

Hence, hxi+1 − hyi+1 = (hxi − hyi)(1− k(
1

c(1− c) )).

Therefore, the parameter k is acceptable if k( 1
c(1−c) ) < 1,

leading to the conclusion that

k < c(1− c) (3)

3. Battery Transition Systems
We incorporate the discrete battery model from Equation 2 into a
weighted transition system. The system consists of finitely many



control-states and weighted transitions between them, where the
weights denote the amount of energy recharged/consumed at each
operation.

3.1 Weighted Transition Systems and Battery Semantics
A transition system is a tuple 〈S,∆, sι〉 where S is a (possibly
infinite) set of control states, sι ∈ S is the initial control state, and
∆ ⊆ S × S is a set of transitions. A weighted transition system
(WTS) is a tuple S = 〈S,∆, sι, ν〉 where 〈S,∆, sι〉 is a transition
system, and ν : ∆ → Z is a weight function labeling transitions
with integer weights1.

A battery transition system (BTS or battery system, for short) is
a tuple B = 〈〈S,∆, sι, ν〉, c, k〉 where 〈S,∆, sι, ν〉 is a WTS with
a finite number of control states (i.e., |S| < ∞), c ∈ R is a width
constant with 0 < c < 1, and k ∈ R is a diffusion constant with
0 < k < c(1− c).

Semantics. Given a BTS B = 〈S, c, k〉, a battery status (x, y) ∈
R2
>0 represents the current configuration of the battery. Intuitively,

the values x and y represent the charge in the available-charge
tank and the bound-charge tank of the battery, respectively (see
Figure 4).

If the current battery status is (x, y), on a transition of weight
w, we define the change in the battery status using a function
Post : R2 × Z → R2, letting the battery status after the transi-
tion (x′, y′) = Post((x, y), w). Here, we follow the standard con-
vention of energy transition systems and consider a positive (resp.
negative) weight as adding (resp. drawing) a charge to (resp. from)
the battery. In matrix notation, we have the following.

Post((x, y), w) =

[
AB ·

(
x
y

)]>
+

(
w
0

)>
, where

AB =

(
1− k

c
k

1−c
k
c

1− k
1−c

)
The matrix AB is called the diffusion matrix. Note that the Post
function indeed follows Equation 2 except for the change in the
sign of w. The values k

c
· x and k

1−c · y denote the heights
hx and hy of the two tanks, and hence, we get that x′ =
x − k · (hx − hy) + w and y′ = y + k · (hx − hy). We
abuse notation by defining Post(t, w1w2 . . . wm) inductively as
Post(Post(t, w1), w2 . . . wm) where each wi ∈ Z.

Given an initial battery status tι ∈ R2
>0, the semantics of a

BTS B = 〈〈S,∆, sι, ν〉, c, k〉 is given by a (possibly infinite)
transition system 〈E,→, eι〉 where E = S × R2

>0 is the set of
states, →⊆ E × E is the transition relation, and eι = (sι, tι) is
the initial state.
• We call each (s, t) ∈ E an extended state with s ∈ S being its

control state, and t ∈ R2
>0 being its battery status 2.

• We have ((s, t), (s′, t′)) ∈→ if and only if Post(t, w) = t′

and (s, s′) ∈ ∆ ∧ ν((s, s′)) = w. We write (s, t) → (s′, t′)
instead of ((s, t), (s′, t′)) ∈→.
A weight w (and by extension, a transition with weight w)

is feasible from battery status t if Post(t, w) ∈ R2
>0, namely

if Post(t, w) is a valid battery status. Similarly, a sequence of
weights w0w1 . . . wn is feasible from t iff w0 is feasible from t
and each wi is feasible from Post(t, w0 . . . wi−1). Extending the
nomenclature, we call every t ∈ R2 \ R2

>0 infeasible.

1 The weights in a weighted transition system are often rational numbers
rather than integers. All of our results equally hold for rational weights, by
simply multiplying all weights by the product of all denominators.
2 All of our results equally hold for the case that the element values should
be non-negative, rather than strictly positive, but the proofs are marginally
simpler in the strictly positive case.

The traces of a BTS B, denoted Π(B), are given by (infinite or
finite) paths of the form π = (s0, t0)(s1, t1) . . . where s0 = sι
and t0 = tι and for every i ≥ 1, we have (si−1, ti−1)→ (si, ti).
The corresponding control trace is given by θ = control(π) =
s0s1 . . ., and the set of control traces by Θ(B) = {control(π) |
π ∈ Π(B)}. We say that a (finite or infinite) sequence of control
states s0s1 . . . is feasible from a battery status t iff the weight
sequence w0w1 . . . is feasible from t, where (si, si+1) ∈ ∆ ∧
ν((si, si+1)) = wi.

Energy feasibility. We define an alternate set of semantics corre-
sponding to the classical notion of ideal-energy systems. We say
that (x, y) ∈ R2 is energy-feasible if x + y > 0. As for the
term “feasible”, we further extend the notion of energy-feasible as
follows: 1. A sequence of weights w0 . . . wn is energy-feasible
from (x, y) iff Post((x, y), w0 . . . wi) is energy-feasible for all
0 ≤ i ≤ n; and 2. A sequence of control states s0s1 . . . is
energy-feasible from (x, y) iff w0w1 . . . is energy-feasible from
(x, y) where wi = ν(si, si+1).

Characteristic functions. For mathematical simplicity, we follow
the approach taken in [20] and use an alternate representation for
battery statuses. We represent (x, y) using two other numbers,
denoting it [e; d], where e and d are defined by the following energy
and deviation functions.
• e = energy((x, y)) = x+ y; and
• d = deviation((x, y)) = x− y · c

1− c .

Intuitively, e is the total energy in the battery and d is the difference
between the heights of the two tanks multiplied by the factor c. The
mathematical simplicity in using energy and deviation stems from
the fact that they correspond to the eigenvectors of the diffusion
matrix. Given e = energy(t) and d = deviation(t), the battery
status t = (x, y) is uniquely determined: x = ce + (1 − c)d
and y = e − x. Hence, we use the notations [e; d] and (x, y)
interchangeably.

Proposition 1. For any battery status [e; d] and w ∈ N, we have
that Post([e; d], w) = [e+w;λ · d+w] where λ = 1− k

1−c −
k
c

.

The above proposition is a translation of the Post function
to the [e; d] notation. Intuitively, the energy is increased by the
weight w as expected, while the difference in the tank heights is
first reduced by a constant factor of λ and then increased due to
the charge w added to the first column. The factor λ turns out to
be the central parameter of the battery, playing a key role in how
BTSs behaves. The following lemma formalizes the intuition that
the bound-charge tank (y) cannot get empty before the available-
charge tank (x) does.

Lemma 2. Suppose battery status (x, y) is feasible, and let
Post((x, y), w) = (x′, y′). We have [e′; d′] = (x′, y′) is feasi-
ble iff x′ > 0, and, equivalently, if and only if ce′+ (1− c)d′ > 0.

Proof. The only if implication is obvious. As for the if, we have
x′ = (1 − k

c
)x + k

1−cy + w and y′ = k
c
x + (1 − k

1−c )y.
Assuming x > 0 and y > 0, it easily follows that y′ > 0.
Hence, (x′, y′) is infeasible if and only if x′ ≤ 0 or equivalently, if
x′ = ce′ + (1− c)d′ ≤ 0

Model checking. The problems we consider ask for the existence
of a control trace θ in the semantics of a BTS B with control states
S given an initial battery status t, such that θ ∈ Φ for some given
objective set Φ ⊆ S∗∪Sω . Specifically, we consider the following
objective sets Φ:
• Finite-automaton emptiness. Asking if there exists a feasible

trace to a set of target control states. Formally, given target
control states T ⊆ S, we have Φ = Reach(T ) = {s0s1 . . . |



∃i : si ∈ T}, i.e., Φ is the set of control traces which visit T at
least once.

• Büchi emptiness. Asking if there exists a feasible trace which
visits a set of target Büchi states infinitely often. Formally, given
Büchi control states L ⊆ S, we have Φ = Büchi(L) =
{s0s1 . . . | ∀j∃i > j : si ∈ L}.

• Streett emptiness. The objective is specified by a set of
request-grant pairs 〈Ri, Gi〉 (where each pair consists of a
set Ri ⊆ S of request control states and a set Gi of
grant control states). The objective asks if there exists a
feasible trace in the system such that for every request-
grant pair, either Gi is visited infinitely often or Ri is vis-
ited finitely often. Formally, given a set of Streett pairs
P = {〈R0, G0〉, 〈R1, G1〉, . . . , 〈Rm, Gm〉}, we have Φ =
Streett(P ) = {s0s1 . . . | ∀0 ≤ i ≤ m : [(∀p∃q > p :
sq ∈ Gi) ∨ (∃p∀q > p : sq 6∈ Ri)]}.

We call the traces which satisfy the finite-automaton, Büchi, and
Streett conditions, accepting, Büchi, and Streett traces, respec-
tively.

3.2 (Battery VS. Ideal-Energy) Transition Systems
Due to the recovery effect, BTSs behave qualitatively differently
from a simple-energy transition systems. Nevertheless, in the do-
main where the energy in the battery is high, they do behave simi-
larly. This lets us solve problems related to unlimited initial credit
(referred to as “unknown initial credit”) by reducing them to the
simple-energy system problems.

Different Behavior. The BTS B1 of Fig. 1 demonstrates a key
difference from a simple-energy system – the total energy in the
initial state is 32, while a transition of weight (−17) cannot be
taken, since the available energy is only 16. Yet, taking the cycle
through states s2 and s3 reduces the total energy, but allows the
(−17)-transition. After the cycle, the battery status is (19 3

4
, 11 1

4
),

which becomes ( 5
8
, 13 3

8
) following a (−17)-transition.

We formalize the difference in the theorem below. It is known
that if an ideal-energy system contains an infeasible trace, it con-
tains a memoryless infeasible trace [8]. A memoryless trace is one
where a control state is always followed by the same control state.
However, an infeasible trace in the system B2 of Fig. 1 must make
different choices at different visits in state s0.

Theorem 3. A battery transition system may have feasible (resp.
infeasible) traces without having any memoryless feasible (resp.
infeasible) traces.

Proof. Consider the BTS B1 in Figure 1. There is a trace for reach-
ing s1, as well as an infinite trace, however both traces make non-
uniform choices at different visits in s0. Analogously, an infeasible
trace in the system B2 of Figure 1 must make different choices at
s0. We prove below the claim for B2. Analogous arguments and
calculations can be made with respect to B1.

The only nondeterminism in B2 is in state s0, allowing tran-
sitions to states s1 and s2. A trace that first chooses s1 is legal,
since the (−15)-transition is feasible from the initial status, after
which there are only positive-weight transitions. The other mem-
oryless option, of always choosing s2, is also legal: Let (x, y) be
the battery status when first reaching s2. It can be shown that the
first few cycles s2 → s3 → s0 → s2 are feasible, after which the
battery status will be (x′, y′), such that x′ > x and y′ > y. By the
monotonicity of the Post function, it follows that the cycle can be
repeated forever.

On the other hand, first choosing s2 and then choosing s1

makes an illegal trace: The battery status when returning to s0

is (12 3
4
, 20 1

4
), which changes to (− 5

8
, 18 3

8
) after the (−15)-

transition.

High energy domain and unknown initial credit problems. In
energy systems, one often considers “unknown-initial-credit prob-
lems”, asking if there is some initial energy that allows accomplish-
ing a task. It is clear that every control state of a battery system
can be reached, at least once, if there is a path leading to it and
enough initial energy to start with. This is formalized in the follow-
ing lemma (which will also serve us in Theorem 5 and in Section 4).

Lemma 4. Consider a BTS B = 〈〈S,∆, sι, ν〉, k, c〉. There
exist constants HighEnergyConstant(B, i) for every i ∈ N
such that for every feasible extended state (s0, [e; d]) with
e > HighEnergyConstant(B, i), every weight sequence
w0w1 . . . wi−1 of length i is feasible from (s0, [e; d]).

Proof. We define the constants inductively as follows:
(a) HighEnergyConstant(B, 0) = 0 if i = 0; and
(b) HighEnergyConstant(B, i) =

max
(
HighEnergyConstant(B, i− 1) +W, W

c(1−λ)

)
other-

wise. Here, W = max(s,s′)∈∆ |ν((s, s′))|.
We prove the theorem by induction. When i = 0, the weight
sequence is empty and there is nothing to prove.

For the induction case, assume that we have shown the result
up to i− 1. Let Post([e; d], w) = [e′; d′]. From Proposition 1, we
get that e′ = e + w and d′ = λd + w. If [e′; d′] is feasible and
e′ ≥ HighEnergyConstant(B, i−1), we can apply the induction
hypothesis on the weight sequence w1 . . . wi−1 to prove the result.
We show these facts below.
• We have e′ = e + w > HighEnergyConstant(B, i) + w ≥
HighEnergyConstant(B, i− 1) +W +w. As w ≥ −W , we
have that e′ > HighEnergyConstant(B, i− 1) ≥ 0.

• Further, we have that ce′+(1−c)d′ = ce+cw+(1−c)λd+
(1− c)w or, equivalently, ce′ + (1− c)d′ = (1− λ)ce+w+
λ(ce+(1−c)d). As [e; d] is feasible, by Proposition 1, ce+(1−
c)d > 0. Further, e > HighEnergyConstant(B, i) ≥ W

c(1−λ)
.

Using these, we get ce′ + (1 − c)d′ > −W + w ≥ 0. By
Lemma 2, [e′; d′] is feasible, completing the proof.

The following theorem states that the emptiness problems for
battery systems reduce to the corresponding problems for energy
systems if the initial energy is large enough.

Theorem 5. Let B = 〈〈S,∆, sι, ν〉, k, c〉 be a
BTS, W = max(s,s′)∈∆ |ν((s, s′))|, and T , L and
{〈R0, G0〉, . . . , 〈Rn, Gn〉} be a set of target states, a set of
Büchi states, and a set of Streett pairs, respectively. There
exist constants MR = HighEnergyConstant(B, |S|) ,
MB = HighEnergyConstant(B, 3|S| + 2W |S|2), and
MS = HighEnergyConstant(B, |S|+ |S|2 +W |S|2 +W |S|3)
such that for any extended state (s, [e; d]): if e > MR (resp.
e > MB and e > MS), a feasible accepting (resp. Büchi and
Streett) trace starting from (s, [e; d]) exists iff an energy-feasible
accepting (resp. Büchi and Streett) trace exists.

Proof of theorem 5. In all three parts, the existence of an energy
feasible trace is directly implied by the existence of a feasible
trace. Therefore, we only deal with showing that the existence of
an energy feasible trace implies the existence of a feasible trace.

The first part (finite-automaton emptiness) follows directly
from Lemma 4. If there exists a path from s to the target set
T , there exists a path of length at most |S|. Taking MR =
HighEnergyConstant(B, |S|) is sufficient to give us the result.

For the second part (Büchi emptiness), the existence of an
energy feasible trace implies that there exists a reachable cycle



which visits a Büchi state and has non-negative total weight. It
can be shown that the length of such a cycle can be bounded by
2|S| + 2W |S|2. Now, if e > HighEnergyConstant(B, |S| +
2|S| + 2W |S|2), we can show, using Lemma 4, that there is a
feasible path from (s, [e; d]) to some (s′, [e′; d′]) where s′ is on
the cycle and e′ > HighEnergyConstant(B, 2|S| + 2W |S|2).
Now, the cycle is feasible from (s′, [e′; d′]) and further, on return-
ing to s′, the energy is at least e′ (as the total weight of the cycle
is non-negative). Using such reasoning, it is easy to see that the
cycle is repeatedly feasible from (s′, [e′; d′]). Hence, a value of
MB = HighEnergyConstant(B, |S|+ 2|S|+ 2W |S|2) is suffi-
cient.

The proof for the third part is very similar to the proof of the
second part except for the bound on the length of the cycle.

A straightforward consequence of the above theorem is that the
unknown initial credit problems for BTSs are decidable. Further-
more, using the above theorem, it is easy to show that these BTS
problems are equivalent to the corresponding energy-systems prob-
lems, which can be solved in polynomial time [6].

Corollary 6. Given a BTS B and a finite-automaton, Büchi, or
Streett condition, the problem of whether there is an initial battery
status [e; d], such that there exists a feasible trace in B satisfying
the condition is decidable in polynomial time.

4. The Bounded-Energy Reachability Tree
Our algorithms for solving the emptiness problems are based on
representing the infinite tree of all the possible traces in the BTS
in a finite tree that summarizes all required information. The con-
struction of the tree uses a “high-energy constant” – exploration
from states whose energy is above the constant is stopped, as they
can be further handled by a reduction to a simple-energy system us-
ing Theorem 5. Hence, the tree summarizes bounded-energy reach-
ability, and we denote it BERT. As in Theorem 5, the value of the
high-energy constant depends on the problem to be solved. We de-
scribe how we construct the tree, taking the high-energy constant
as a parameter. We start with some basic lemmata about a total or-
der among battery statuses of equal energy. Then, we present the
0-cycle saturation lemma, which helps summarize unbounded iter-
ations of cycles in a finite manner.

Feasibility order for battery statuses. The following lemma
shows that there exists a total order on the set of battery statuses
with the same energy such that every weight sequence feasible from
a lower battery status is also feasible from a higher battery status.

Lemma 7. Given two battery statuses [e; d] and [e; d′] with d > d′,
every weight sequence w0w1 . . . wn−1 feasible from [e; d′] is also
feasible from [e; d]. Furthermore, if Post([e; d], w0 . . . wn−1) =
[e′′; d′′] and Post([e; d′], w0 . . . wn−1) = [e′′; d′′′], we have d′′ >
d′′′.

Proof. We prove the result by induction. For the base case, we
let the weight sequence be of length 1, i.e., w0. From Proposi-
tion 1, we know that Post([e, d], w0) = [e + w0, λd + w0] and
Post([e, d′], w0) = [e + w0, λd

′ + w0]. Hence, d′′ = λd + w0

and d′′′ = λd′ +w0. As d > d′, we get that λd +w0 > λd′ +w0

and d′′ > d′′′.
Now, assume that [e +w0;λd′ +w0] is feasible. By Lemma 2,

we get that c(e+w0)+(1−c)(λd′+w0) > 0. As d > d′, we have
c(e+w0)+(1−c)(λd+w0) > 0 and c(e+w0)+(1−c)d′′ > 0.
This gives us that [e + w0; d′′] is feasible, hence completing the
proof for the base case.

Now, assume that the required result holds for every weight
sequence of length n − 1. Applying the induction hypothesis on

the battery statuses [e+w0;λd+w0] and [e+w0;λd′ +w0] and
the weight sequence w1 . . . wn−1 gives us the required result.

Guided by Lemma 7 above, we define a partial order on the
set of battery statuses as follows: [e′; d′] v [e; d] if e = e′ and
d′ ≤ d, in which case we say that [e; d] subsumes [e′; d′]. We
extend the partial order v to extended states (with both control
states and battery statuses) by letting (s′, [e′; d′]) v (s, [e; d]) if
s = s′ and [e′; d′] v [e; d]. Lemma 7 can now be restated as
follows: If (s′, [e′; d′]) v (s, [e; d]), every control path feasible
from (s′, [e′; d′]) is also feasible from (s, [e; d]).

Zero-cycle saturation. We formalize below the key observation
that 0-energy cycles can be finitely summarized: an infinite run
along such a cycle monotonically converges to a fixed battery
status. Moreover, the deviation in the limit is independent of the
initial status.

Lemma 8 (Zero-cycle saturation). Let w0 . . . wn−1 be a sequence
of weights such that

∑n−1
i=0 wi = 0 and let t0, t1, . . . be a sequence

of tuples in R2, such that ti+1 = Post(ti,w0 . . .wn−1). We have
the following:
1. The sequence t0, t1, . . . converges (say to t∗ = [e∗; d∗]). In

other words, ∀ε ≥ 0.∃m ∈ N : |t∗ − tm|1 ≤ ε where |.|1
denotes the maximum absolute component in a vector.

2. We have ∀i ∈ N : t∗ v ti v t0 or ∀i ∈ N : t0 v ti v t∗. In
the latter case, if w0 . . . wn−1 is feasible from t0 it is feasible
from each ti.

Proof. Let ti = [ei; di]. Obviously, ∀i.ei = e∗. By repeated ap-
plication of Proposition 1 on the weights w0w1 . . . wn−1, start-
ing with ti, we have di+1 = di · λn +

∑n−1
p=0 wp · λ

n−1−p.
Hence, for all i ∈ N, di = d0 · λi·n +

∑i−1
q=0 L · λ

n·q , where
L =

∑n−1
p=0 wp · λ

n−1−p. From this, it follows that the sequence
di converges to d∗ =

∑∞
q=0 L · λ

q·n = L · 1
1−λn . Further,

d(i+1) = d0 · λi·n+n + L ·
i∑

q=0

λn·q

= d0 · λi·n + L ·
i−1∑
q=0

λn·q + d0 · [λi·n+n − λi·n] + L · λi·n

= di + d0 · [λi·n+n − λi·n] + L · λi·n

= di + λi·n(1− λn) · [ L

1− λn − d0]

= di + λi·n(1− λn) · [d∗ − d0]

Since ∀i.λi·n(1 − λn) is positive, it follows that di+1 is bigger,
or not, than di based on whether d∗ < d0 or not. If d∗ < d0, we
get d0 > d1 > . . . > d∗, or, equivalently, t0 w t1 w . . . w t∗.
Similarly, if d∗ ≥ d0, we get d0 ≤ d1 ≤ . . . ≤ d∗, or, equivalently,
t0 v t1 v . . . v t∗. The feasibility of w0 . . . wn from each ti
follows from Lemma 7 and ti w t0.

We denote the limit deviation d∗ as
Saturate(w0w1 . . . wn−1), i.e., Saturate(w0w1 . . . wn−1) =

1
1−λn ·

(∑n−1
p=0 wp · λ

n−1−p
)

. Note that this deviation
does not depend on the initial battery status t0. Accord-
ingly, we extend the definition of the function Saturate
to battery statuses as Saturate([e; d], w0w1 . . . wn−1) =
[e; Saturate(w0w1 . . . wn)].

Constructing the tree. For generating a finite tree with all the rel-
evant bounded energy reachability information, we explore the fea-
sible states and transitions starting from the initial state. However,



1. Extended states with high-enough energies are not explored
further, and

2. If an extended state q that has an ancestor q′ with the same
control state and the same energy (but possibly a different
deviation) is reached, we check the feasibility order, i.e., if
q v q′ or q′ v q. If q v q′ we stop exploration from q;
otherwise, we saturate this 0-energy cycle from q′ to q, i.e.,
calculate the fixed battery status t∗ to which an infinite run on
that cycle will monotonically converge to (see Lemma 8). Then,
we replace the battery status in q′ with the maximum between
battery status in q and t∗.
The procedure ComputeBERT (Algorithm 1) computes the

bounded-energy reachability tree BERT, given a BTM B, an initial
battery status t, and an energy bound M . It is a rooted tree where
each node is labelled with an extended state. During the procedure’s
execution, each node in the tree is either open (in OpenNodes) or
closed, and exploration will only continue from open nodes. In ad-
dition, each node contains a Boolean field star, marking whether
its label is a result of saturation. Initially, the root of BERT is la-
belled with the initial extended state (sι, t) and the root node is
added to the set of OpenNodes.

In each step, one open node (currNode) is picked and removed
from the set of OpenNodes. Let currNode.label = (s, [e; d]). By
default, we append to currNode children labelled by all feasible
successors of (s, [e; d]) (we call this an exploration step). If one of
the following holds, we do not perform the exploration step.
• In case the energy (i.e., e) of currNode is greater than the

given bound M , we stop exploration from it.
• In case an ancestor ancestor (with label (s, [e; d′])) of
currNode has the same control state and energy as currNode:

If [e; d] v [e; d′] we stop exploration from currNode.
If [e; d′] < [e; d] we i) delete all the descendants of
ancestor; and ii) replace the battery status in the label
of ancestor with the <-maximum between [e; d] and the
zero-cycle saturation of [e; d′], where d′ is the 0-cycle
saturation of the the weight sequence from ancestor to
currNode. Note that if the weight sequence from ancestor
to currNode is infeasible from [e; d′] (which can happen if
there is a saturation of another cycle between the ancestor
and currNode), we replace [e; d′] by [e; d] and not the max-
imum.

When no open nodes are left, the procedure stops and returns BERT.
We prove in a series of lemmata the properties of the procedure
ComputeBERT and of the returned tree.

Termination. We prove that Algorithm 1 terminates for every
input, by showing a bound on both the number of possible nodes
in BERT and the number of node deletions in an execution. The
latter bound follows from (i) every deletion event strictly increases
a deviation value; and (ii) the number of possible values that a
deviation can get in a deletion event is bounded. Note that this is
in contradiction to the unbounded number of deviations that may
occur in a trace of the BTS B.

Lemma 9. Algorithm 1 terminates on all inputs.

Proof. Termination follows from a bound on both the number of
possible nodes in BERT and the number of node deletions in an
execution.

The number of nodes in a tree depends on the fanout of the
nodes and the length of the branches. The fanout of every node in
BERT is bounded by the number of states in the BTS B. As for the
branches, the control state and energy of each node in a path is
unique, except for the leaf, giving a bound of |S| ×M + 1 to the
length of a path.

The bound on the number of deletions follows from (i) every
deletion event strictly increases a deviation value; and (ii) the num-

Algorithm 1 ComputeBERT: Computing the bounded-energy
reachability tree
Require: Battery system B = 〈〈S,∆, sι, ν〉, k, c〉, initial battery

status t, energy bound M
1: BERT← EmptyTree
2: BERT.root.label← (sι, t); BERT.root.star ← false
3: OpenNodes← {BERT.root}
4: while OpenNodes 6= ∅ do
5: Pick and remove currNode from OpenNodes
6: (s0, [e; d])← currNode.label
7: // If we found a good cycle, saturate that cycle
8: if currNode has an ancestor ancestor with label

(s0, [e; d′]) then
9: if d > d′ then

10: s0 . . . sns0 ← control state sequence in node labels
from ancestor to currNode

11: w0 . . . wn ← ν((s0, s1))ν((s1, s2)) . . . ν((sn, s0))
12: if w0w1 . . . wn is feasible from [e; d′] and

Saturate(w0 . . . wn) > d then
13: ancestor.label←(s0, [e; Saturate(w0 . . . wn)]);
14: ancestor.star ← true
15: else {There was another cycle saturation between

ancestor and currNode}
16: ancestor.label← [e; d]
17: BERT.delete(all descendants of ancestor)
18: OpenNodes ← OpenNodes ∪ {ancestor} \

all descendants of ancestor
19: continue; // If d < d′ there is no further exploration from

the current node
20: else {Explore one step further}
21: for all (s0, s

′) ∈ ∆ do
22: if Post([e; d], ν(s0, s

′)) is feasible then
23: newNode← new child of currNode
24: newNode.label← (s′, Post([e; d], ν(s0, s

′)));
25: newNode.star ← false
26: if energy(Post([e; d], ν(s0, s

′))) ≤M then
27: OpenNodes← OpenNodes ∪ newNode
28: return BERT

ber of possible values that a deviation can get in a deletion event is
bounded. Note that this is in contradiction to the unbounded num-
ber of deviations that may occur in a trace of the BTS B.

Consider a node-deletion event in the execution of Algorithm 1,
and a new deviation value set to ancestor.label.
(i) The new value is either Saturate(w0 . . . wn) or d, set
in Line 14 or Line 16, which are in the scope of “if
Saturate(w0 . . . wn) > d > d′” or “if d > d′”, respectively,
while the old value is d′.
(ii) The new value is uniquely determined by the following:
• The value of Saturate(w0 . . . wn), where w0 . . . wn is the

sequence of weights from ancestor to currNode; or
• The label of the last saturated (i.e., starred) node be-

tween ancestor and currNode, and the suffix wi . . . wn of
w0 . . . wn corresponding to the segment from the last starred
node to currNode, otherwise.

In the first case, resulting from Line 14, the new value only depends
on w0 . . . wn, which in turn is determined by s0s1 . . . sns0. In the
second case, resulting from Line 16, let (si, [e

(i); d(i)]) be the label
of the last starred node. By Lemma 8, [e(i); d(i)] only depends on
the sequence of weights in a simple cycle of the BTS B, thus may
take a bounded number of possible values. The new value is then
calculated by Post([e(i); d(i)], wi . . . wn), which only depends on
[e(i); d(i)] and the sequence wi . . . wn.



Correctness. We now prove that BERT is a summarization of
all extended states reachable through states of low-energy. Let
Reach(M) be the set of extended states reachable from the initial
state of the BTS B through paths containing only extended states of
energy less thanM . In the lemmata below, we prove the following:
• Soundness. For every node node in BERT and for all ε > 0,

there is an extended state q ∈ Reach(M) such that q v
node.label and the difference between the deviations of q and
node.label is smaller than ε.

• Completeness. For every extended state q ∈ Reach(M), there
exists a node node in BERT such that q v node.label.

Lemma 10 (Soundness). For every node node with label (s, [e; d])
encountered in an execution of Algorithm 1 and ε > 0, there
exists an extended state (s, [e; d − δ]) reachable from (sι, t) with
0 ≤ δ < ε.

Proof. The claim can be proved by looking at all the points in
the algorithm where a new label is created (lines 10, 14, and
25). The claim is trivially true for the initial label of the root.
Assume as induction hypothesis that the claim holds for every label
encountered upto the current point of the execution. Fix ε ≥ 0.
Saturation. Let the new label be created during a deletion event, in
line 10 or line 14. In the case the label of currNode is copied to
the label of ancestor, the proof follows immediately as we are just
copying an existing label. Otherwise, we are taking the Saturate
value, and the proof is based on Lemma 8. By iterating the path
from ancestor to currNode a sufficient number of times, we can
get as close as necessary (i.e., within ε) to the limit of the zero-
weight cycle saturation. Lemma 8 also gives us that every iteration
is feasible.
Exploration. Let (s′, [e′; d′]) be a new node label created in line 25.
Choosing ε′ < min( ε

λ
, ce′ + (1− c)d′), by the induction hypoth-

esis, there is a feasible path from (sι, t) to (s, [e; d − δ′]) with
0 ≤ δ′ < ε′.

Now, we have [e′; d′] = Post([e; d], w) = [e + w;λd + w]
and Post([e; d − δ′], w) = [e′; d′ − λ · δ′]. Letting δ = λδ′, we
get 0 ≤ δ = λδ′ < λε′ ≤ ε. If we prove that [e′; d′ − δ] is
feasible, we are done as we have shown that the path from (sι, t)
to (s, [e; d−δ′]) followed by the feasible transition from (s, [e; d−
δ′]) to (s′, [e′; d′ − δ]) is a path from (sι, t) to (s′, [e′; d′ − δ]).

As [e′; d′] is feasible, we get that ce′ + (1 − c)d′ > 0. As we
chose that ε′ < ce′ + (1− c)d′, we get that ce′ + (1− c)d′ − δ =
ce′+ (1− c)d′−λδ′ > ce′+ (1− c)d′−λε′ > ce′+ (1− c)d′−
λ(ce′ + d′) > (1 − λ)(ce′ + (1 − c)d′) > 0. This completes the
proof for this case.

Lemma 11 (Completeness). Let (s, [e; d]) be an extended state
with e < M that is reachable from (sι, t) through extended states
with energy less than M . Then, there exists a node with label
(s, [e; d′]) in BERT with d′ ≥ d.

Proof. We prove the lemma by induction on the length of the path
from (sι, t) to (s, [e; d]). For paths of length 0, it is trivial as (sι, t)
is the initial label of the root. Suppose we have proven the claim for
paths upto the length n− 1.

It is easy to induct to length n. Suppose the path of length
n − 1 ending with (s, [e; d]) is extended to length n by adding
(s], [e]; d]]). The proof has two cases:
• If the node labelled with (s, [e; d′]) is a non-leaf node, then it

has a successor labelled (s], [e]; d]
′
]), with d]

′
> d], which is

the required node. This follows from lines 21–27 of Algo. 1.
• If the BERT node labelled with (s, [e; d′]) is a leaf node, it will

have an ancestor labelled (s, [e; d′′]) with d′′ ≥ d. This follows

from line 19 of Algorithm 1. Since the latter node is not a leaf,
we comply with the previous case, and we are done.

5. Model Checking
We are now ready to tackle the finite-automaton, Büchi, and Streett
emptiness problems for BTSs. We show that the problems are
decidable and give suitable algorithms. The algorithms are based
on Theorem 5 and analysis of the bounded-energy reachability tree,
as constructed in Section 4.

5.1 Finite-Automaton Emptiness
Combining the results from the previous section on bounded en-
ergy reachability tree and Theorem 5, we can obtain a complete
algorithm for the finite-automaton emptiness problem in a battery
system. Given a BTS B with states S, an initial battery status t, the
algorithm works as follows:
• Build a bounded-energy reachability tree
BERT = ComputeBERT(B, (sι, t),M), where
M = HighEnergyConstant(B, |S|));

• If there is a node label (s, [e; d]) in BERT where s is in the target
set T , return true;

• If there is a node label (s, [e; d]) in BERT where e > M , and
some node in the target set is reachable from (s, [e; d]) through
an energy-feasible path, return true;

• Otherwise, return false.
The correctness proof of the algorithm follows from Lemma 4 and
the soundness and completeness of the bounded-energy reachabil-
ity tree (Lemmas 10–11). The following theorem states that this
algorithm can be implemented in polynomial space in the inputs.

Theorem 12. The finite-automaton emptiness problem for BTSs is
decidable in polynomial space with respect to the number of control
states in the BTS and a unary encoding of weights.

Proof. The major part of the algorithm is the construction of the
bounded-energy reachability tree. For a given energy boundM , this
tree can contain an exponential number of nodes in M . However,
using standard on-the-fly techniques, we can reduce the space com-
plexity, only storing the current branch of the tree being explored.
The corresponding space is the product of the number of nodes in
each branch and the bits required for storing a node’s label.

By the proof of Lemma 9, the length of each branch in the
tree is bounded by |S| × M + 1, where S are the states of the
given BTS B. For the finite-automaton emptiness algorithm, we
use M = HighEnergyConstant(B, |S|) and by the proof of
Lemma 4, we haveM ≤ |S|W + W

c(1−λ)
, whereW is the maximal

negative weight in the BTS. With a unary encoding of the constants,
M is polynomial in the size of the input.

To complete the proof, we need to show that all the labels
created in BERT can be represented in polynomial space in the
energy bound M .

A label contains a control state, an energy, and a deviation.
There are |S| < M control states and up to M different energies.

As for the deviations, they are generated by a sequence of
operations, involving two functions: Post (defined in Section 3)
and Saturate (defined in Lemma 8). By Lemma 8, the value of
Saturate is independent of the deviation value before saturation.
Hence, the deviation at each node in BERT is a result of the last
Saturate operation in the branch of BERT leading to the node,
followed by some Post operations. By the proof of Lemma 9, the
length of each branch in the tree is polynomial in M , implying
up to M applications of Post. Hence, it is left to show that the
Saturate function generates a deviation that can be stored in space



polynomial in M , and that each application of the Post function
adds up to b bits, where b is polynomial in M .

By Lemma 8, given a sequence w0w1 . . . wn−1 of weights,
Saturate(w0w1 . . . wn−1) = 1

1−λn ·
(∑n−1

p=0 wp · λ
n−1−p

)
. The

space required to store this value is polynomial in the constant λ
and n, where n ≤ |S| < M . In each application of Post on a
battery status [e; d] and weight w, we have, by Proposition 1, that
Post([e; d], w) = [e′; d′], with d′ = λ · d + w. Hence, storing d′

requires up to b bits more than storing d, where b is polynomial in
the constant λ and |w| < M .

5.2 Büchi and Streett Emptiness
Suppose we are given a BTS B = 〈〈S,∆, sι, ν〉, k, c〉 and a Büchi
condition given by a set of Büchi states B ⊆ S. Our approach
to Büchi emptiness consists of two major parts. If there exists a
Büchi trace containing an extended state with energy more than
MB = 3|S| + 2W |S|2, the problem can be reduced to the Büchi
problem for simple-energy systems (Theorem 5). Therefore, we
concentrate on the case where the energy of states is bounded by
MB . Here, the key idea is that if the energies of the extended states
are bounded, then a BTS has a Büchi trace if and only if it has a
Büchi trace of a special form.

First, we define the notion of an energy-unique path: we
call a control trace s0s1 . . . sn energy-unique if we have∑p
i=0 ν((si, si+1)) 6=

∑q
i=0 ν((si, si+1)) ∨ sp 6= sq for p 6= q.

Intuitively, s0s1 . . . sn is energy-unique if no trace whose corre-
sponding control trace is s0 . . . sn has two extended states with the
same control state and equal energy. Similarly, s0s1 . . . sn is an
energy-unique 0-energy cycle if s0s1 . . . sn is energy-unique and∑n−1
i=0 ν((si, si+1)) + ν((sn, s0)) = 0.
The following theorem intuitively states that if there exists a

bounded-energy Büchi trace in B, then there exists a lasso-shaped
bounded-energy Büchi trace where the first state of the cycle in the
lasso is a Büchi state and the cycle in the lasso has one of the two
following forms:
• the cycle is an energy-unique 0-energy cycle sl0 . . . s

l
ns
l
0,

such that the sequence sl0s
l
1 . . . s

l
ns
l
0 is feasible from sl0

with the battery status Saturate(w0w1 . . . wn), where wi =
ν((sli, s

l
i+1)) for i < n and wn = ν((sln, s

l
0)); or

• the cycle is an energy-unique 0-energy cycle composed of an
alternating sequence of energy-unique paths and energy-unique
0-energy cycles. Here, every energy-unique 0-energy cycle in
the sequence is unique.

Theorem 13. Suppose a BTS B has a Büchi trace such that every
extended state has energy less than some constant M . Then, B has
a Büchi trace π such that the corresponding control trace θ has one
of the following two forms:
Form 1 θ = θh(sl0s

l
1 . . . s

l
n)ω where sl0 is a Büchi state, and

sl0s
l
1 . . . s

l
ns
l
0 is an energy-unique 0-energy cycle.

Form 2 θ = θh(θl)
ω , where θh, θl ∈ S∗ and θl =

(s0
0 . . . s

0
k0

)(θl0)r0 . . . (sn0 . . . s
n
k1

) . . . (θln)rn(sn+1
0 . . . sn+1

kn+1
)

and (a) each θli is a distinct energy-unique 0-energy cycle;
(b) each si0 . . . s

i
ki

is a energy-unique path; (c) θl is a 0-energy
cycle; and (d) s0

0 is a Büchi state.

We omit the proof of Theorem 13 due to lack of space. The
proof proceeds by taking a witness Büchi trace and reducing it to
one of the two forms by deleting parts of the trace where the initial
and final energies and control states are the same, while the final
deviation is less than the initial deviation.

The algorithm. The Büchi-emptiness algorithm intuitively con-
sists of two separate parts: (a) searching for high energy Büchi

traces (where some extended state has energy more than MB =
HighEnergyConstant(B, 3|S| + 2W |S|2)); and (b) searching
for low energy fair traces (where every extended state has en-
ergy less than MB). The algorithm first constructs BERT =
ComputeBERT(B, (sι, t),MB).
High energy. For every node label (s, [e; d]) in the BERT where

e > MB , we check (using techniques of [6]) whether there
exists an energy-feasible fair trace from it.

Form 1 low energy. For every node label (s, [e; d]) in BERT with
e ≤ MB and s ∈ B, we check if there exists a fair trace of
Form 1 starting from (s, [e; d]). Performing this check entails
constructing energy-unique 0-energy cycles θl starting from s
and examining if θl is feasible from Saturate((s, [e; d]), θl).

Form 2 low energy. For every s ∈ B and e < MB , we run
Algorithm 2 with initial state s and initial battery status [e; d]
to check if there exists a fair trace of Form 2. Here, d is the
maximum deviation of a node label which has control state s
and energy e.

Algorithm 2 Finding form 2 low energy fair traces
Require: Battery system B = 〈〈S,∆, sι, ν〉, k, c〉, Energy bound

M ∈ N, Control state s, Initial battery status [e; d]
1: d∗ ← d
2: while true do
3: BERT← ComputeBERT(〈〈S,∆, s, ν〉, k, c〉, [e; d∗],M)
4: P ← {leaf.label | BERT leaf leaf has label (s, [e; d′]) ∧

leaf has a starred ancestor }
5: if P = ∅ then
6: return false
7: else if d∗ = max{d′ | (s, [e; d′]) ∈ P} then
8: return true
9: else

10: d∗ ← max{d′ | (s, [e; d′]) ∈ P}

Lemma 14. Algorithm 2 returns true if B contains a Büchi trace
of Form 2, and false otherwise.

Intuitively, Algorithm 2 works by finding some deviation d∗

such that (s, [e; d∗]) is feasibly reachable from itself through
some number of 0-energy cycle saturations (represented by starred
nodes). In every iteration of the while-loop, it decreases the pos-
sible value for d∗ to the largest deviation for control-state s and
energy e reachable from the previous value of d∗ through some
starred nodes. If d∗ becomes so low that we are not able to saturate
any 0-energy cycle starting from (s, [e; d∗]), then we return false.

Theorem 15. Büchi emptiness for battery transition systems is
decidable in polynomial space with respect to the number of states
and a unary encoding of weights and constants.

Equipped with Theorem 13, the proof of Theorem 15 follows in
a similar fashion as in Theorem 12.

Using similar techniques, we can construct an algorithm for
Streett emptiness. In this case, also keeping track of the set of states
visited along each branch of the reachability tree.

Theorem 16. Street emptiness for battery transition systems is
decidable in polynomial space with respect to the number of states
and a unary encoding of weights and constants.

5.3 ω-Regular Model Checking
Equipped with a procedure for checking Büchi emptiness (Theo-
rem 15), one can check whether a given BTS B satisfies any ω-
regular constraint ϕ that is defined with respect to B’s states. Such
a constraint can be formalized, for example, by a linear temporal
logic (LTL) formula, whose atomic propositions are the names of



the states in B. Indeed, any ω-regular constraint ϕ can be translated
to a Büchi automatonA, such thatA’s language is equivalent to the
language of ϕ (or to the language of its negation, as is the common
practice in the case of an LTL formula) [24]. Now, one can take the
product ofA and B, defined in the usual way, getting a BTS C with
a Büchi emptiness problem.

As Streett emptiness is a special case of ω-regular model check-
ing, one may wonder why we bothered to have Theorem 16. The
reason lies in the complexity – In Theorem 16, we show that Streett
emptiness can be solved in the same complexity class as the one for
Büchi emptiness, while translating a Streett automaton into a Büchi
automaton might involve an exponential state blowup [23].

6. Case Study
We conclude this paper with a case study relating to controlling an
energy-constrained robot. We first define a toy language for pro-
gramming the robot controller, inspired by various real languages
for programming robots, and define how the different constructs
interact with the environment.

The setting. We model a semi-autonomous robot that operates
in an arena DL where each l ∈ DL is a possible location of the
robot. For example, a location can be an (x, y) vector, providing
the position of the robot in a plane of 1, 000× 1, 000 squares.

We model the environment of the robot as a function that gives
attributes to each location in the arena. Formally, the environment
is E : DL → 〈DE1 , DE2 , . . . , DEm〉 where each DEi is a finite
domain of some property. For example, the environment may define
the terrain of each location and whether it lies in the sun or in the
shade, in which case E(3, 5) = 〈“smooth terrain”, “sun”〉 means
that the location (3, 5) is a sunny place with a smooth terrain. Note
that, in this case study, the environment is time invariant.

The actions of the robot are governed by its control program. In
each time step, denoted by a ‘tick’, the control program computes
output actions based on some external inputs, sensor values, and
the values of the robot’s internal variables.

The external input is given by input variables 〈I1, . . . , Ik〉,
each over a finite domain DIi , and it comes from an external
independent agent. The sensor values, given by sensor variables
〈S1, . . . , Sr〉, over the finite domainsDS1 , . . . , DSr , are computed
automatically based on the environment of the robot and its cur-
rent location. Formally, for each sensor variable Si there is a func-
tion ξi : E × DL → DSi . The robot also has some internal
variables, 〈N1, . . . , Ng〉, over the finite domains DN1 , . . . , DNg ,
used for putting a logic in its behavior. The output actions are
given by output variables 〈A1, . . . , Al〉, over the finite domains
DA1 , . . . , DAl . Upon performing the actions, the current loca-
tion, given in the variable L, is automatically computed based
on the previous location and the actions; formally, by a function
η : DL ×DA1 × . . .×DAl → DL.

The state of the robot, V , encapsulates the values of all the above
variables. There is a cost function Energy which gives the energy
gain (positive) or consumption (negative) of actions in the given
environment, i.e., Energy is of type DE1 × . . .×DEm ×DA1 ×
. . . × DAl → Z. For the functions η, ξi, and Energy, we use the
short-hand of applying the function to the whole state instead of the
relevant variables. For example, instead of writing “ξi(l) = v and
value of L in state σ is l”, we write “ξi(σ) = v”.

The controller language. The language of the robot-control pro-
gram is defined by the syntax shown in Figure 5. Most of the con-
structs in this language are standard, and will not be explained
in detail. Note that the program cannot directly write to the loca-
tion variables and sensor variables, but can only write to the inter-
nal variables and action variables. The most interesting construct

program := statements

statements := statement | statement; statements
statement := (label : tick) | action_var = expr

| internal_var = expr | skip
| if (expr == 0) statements else statements
| while (expr == 0) statements

expr := sensor_var | input_var | internal_var
| expr + expr | constant | expr * expr
| (expr == 0) ? expr : expr

Figure 5. Syntax of the robot-control language

in the syntax is the tick statement. Intuitively, the tick state-
ment performs the actions described by the output variables (i.e.,
changes the location using the η function) and reads new values
into the sensor variables (based on the environment and the cur-
rent state, using the ξi functions) and into the input variables (non-
deterministically). The formal semantics of the tick statement is
described in the next paragraph.

We provide in Example 17 a simple setting of an environment,
a control program, and the finite domains of the various variables.

Example 17.
The environment (arena).

x�y 1 2 3 4
1 - - × -
2 × / × -
3 - / / /
4 - × / /

Legends.

: Sun ; : Shade
- : hard ; / : soft ; ×: obstacle

The robot variables.
Location. DL = {(1, 1), (1, 2), . . . , (4, 4)}
Inputs. DI1 = {Move,None}

DI2 = {Front ,Back ,Left ,Right}
Sensors. DS1 = {InTheSun, InTheShade}

DS2 = {SunOnFront ,NoSunOnFront}
. . . Sensors for sun and obstacles all around

DS9 = {ObstacleOnRight ,NoObstacleOnRight}
Actions. DA1 = {Move,None}

DA2 = {Front ,Back ,Left ,Right}
Internal. DN1 = {InTheSun, InTheShade}

DN2 = {WasInTheSun,WasInTheShade}
DN3 = {Was2 InTheSun,Was2 InTheShade}

The cost function. (The direction does not matter.)
Energy(Sun,Hard/Soft ,None) = +12
Energy(Sun,Hard ,Move) = +1
Energy(Sun,Soft ,Move) = −1
Energy(Shade,Hard/Soft ,None) = −5
Energy(Shade,Hard ,Move) = −12
Energy(Shade,Soft ,Move) = −15

The robot-control program.
The program, intuitively, defines the following behavior.

• Obey the external input, whenever it is legal. Otherwise, do
nothing, if legal, or else check for a legal action.

• The constraints for a legal action:
Do not go into an obstacle. (A location out of the arena is
considered as an obstacle.)
Do not stay in the sun for more than two consecutive steps.



Whenever staying for two consecutive steps in the sun, avoid
the sun for at least two consecutive steps.

The code is straightforward; we give below some of its fragments.

while(1) {
// Check if the input is legal

// Moving into an obstacle?
if (I1 = Move &&

( I2 = Front && S6 = ObstacleOnFront
|| I2 = Back && S7 = ObstacleOnBack
|| I2 = Left && S8 = ObstacleOnLeft
|| I2 = Right && S9 = ObstacleOnRight )

)
A1 := None

// Too much in the sun?
if (N2 = WasInTheSun

&& (N1 = InTheSun || N3 = Was2InTheSun) && ...
)
// Choose a legal action
if (N1 = InTheShadow)

A1 := None
else if (S2=NoSunOnFront && S6=NoObstacleOnFront)

A1 := Move; A2 := Front
...

label1 : tick;
N3 := (N2=WasInTheSun)? Was2InTheSun:Was2InTheShade
N2 := (N1=InTheSun)? WasInTheSun : WasInTheShade
N1 := S1

}

Semantics. Consider a robot-control program P , and fix diffu-
sion constant k and a width constant c for a battery. We define the
semantics of P in the standard small-step operational style. We
summarize the state of the program as (σ, t) where σ is a val-
uation of the variables, and t is a battery status. Therefore, the
small-step semantics is given by a relation ⇒ where intuitively,
(P, (σ, t)) ⇒ (P ′, (σ′, t′)) holds if executing the first step from
the program fragment P at state (σ, t) leads to (σ′, t′) and the re-
maining program fragment is P ′.

We assume that all the constructs except tick are executed
instantaneously, and without any consumption of power; hence, the
only construct that updates the battery status in the summary is the
tick. Therefore, for all the other constructs, we do not explicitly
present the semantics, but point out that the semantics are similar
to a standard while-language. For the tick construct, we define the
semantics using the proof rules from Figure 6.

Intuitively, on executing a tick, the effects of the output actions
are performed, the sensor variables are updated based on the new
location and environment, the next valuation of the input variables
is given, and then the battery status is updated based on the cost of
the actions in the current environment.

Problem statement. We consider model-checking problems; that
is, asking whether a given model satisfies a given specification.
The model, in our case, is a robot and its environment; namely, a
robot-control program, battery constants, an initial battery status,
an environment with locations DL, and an initial location. The
specification is a regular or ω-regular language over the (finite
or infinite) sequences of locations in DL. The model-checking
problem is affirmatively answered if the robot has a path, in the
given setting, such that the sequence of locations along the path
belongs to the language of the specification.

Consider, for example, the setting of Example 17 together with
an initial location (1, 1), a battery width constant 1

2
, a battery dif-

fusion constant 1
8

, and an initial battery status (16, 16). A regular
specification can ask, for instance, whether the robot has a finite

path reaching the location (3, 2). An ω-regular specification can
ask, say, whether the robot has an infinite path visiting the loca-
tion (1, 4) infinitely often, while avoiding the locations (3, 1) and
(4, 4).

Model-checking algorithm. Given a control-program P , an en-
vironment E , a battery width constant c, a battery diffusion con-
stant k, an initial battery status tι, and an initial variable val-
uation σι, we define the equivalent battery transition system
BTSJP, E , c, k, tι, σιK = 〈〈S,∆, sι, ν〉, c, k〉 as follows.

Let L be the set of labels of the tick statements in the program.
• A state in the BTS is a pair (l, σ) where l ∈ L is a label, and σ

is a valuation of all the variables in the program.
• There exists a transition from (l1, σ1) to (l2, σ2) on weight w

if for some program fragments P1 and P2:
there exist battery statuses t1 and t2 and a proof that

((l1 : tick);P1, (t1, σ1)) ⇒ ((l2 : tick);P2, (t2, σ2))
where the T ick rule is applied exactly once; and
there exist battery statuses t1 and t2, such that there is a

proof (P, (σι, t1))⇒ ((l1 : tick);P1, (σ1, t2)).
• The cost of a transition from (l, σ) is w if applying the cost

function on the valuation of the environment and action vari-
ables in σ is w.

• The initial state sι is given by (l, σ) such that there exists a
program fragment P1 and a battery status t such that there is
a proof of (P, (σι, t)) ⇒ (((l : tick);P1), (σ, t)) containing
no applications of the T ick rule. Due to the determinism of our
language, it is guaranteed that there exists only one such (l, σ).
A part of the BTS corresponding to Example 17 is given in

Figure 7.
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Shade

(1, 2)

Was2Sun
WasSun

WasShade
Was2Shade

WasSun

(1, 1)

WasShade
Sun
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Was2Shade
WasShade

Sun
(2, 2)

Was2Shade

Shade
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(1, 2)

Was2Shade
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(1, 1)
Shade
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...
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The battery diffusion constant k = 1
8

and its width constant c = 1
2

.
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Figure 7. A part of the BTS that corresponds to the robot and its
environment, as described in Example 17. The best path to location
(3, 2) appears in boldface blue. This path is infeasible by the BTS
semantics, while feasible by models that are based on an ideal-
energy resource.

We have the following theorem.

Theorem 18. Consider a robot model-checking problem consisting
of a control-program P , an environment E with locations DL, a
battery width constant c, a battery diffusion constant k, an initial
battery status tι, an initial variable valuation σι, and a regular or
ω-regular language φ over the sequences of locations in DL.



(label : tick, (σ, t))⇒ (effects; sensors; inputs; battery, (σ, t))
Tick

cost(σ) = w Post(t, w) = t′

(battery, (σ, t))⇒ (skip, (σ, t′))
Battery

v1 ∈ DI1 . . . vl ∈ DIl
(inputs, (σ, t))⇒ (skip, (σ[∀k : Ik := vk], t′))

Inputs

v1 = ξ1(σ) . . . vr = ξr(σ)

(sensors, (σ, t))⇒ (skip, (σ[∀k : Sk := vk], t′))
Sensors

v = η(σ)

(effects, (σ, t))⇒ (skip, (σ[∀k : L := v], t′))
Effects

Figure 6. Semantics of tick

Let B = BTSJP, E , c, k, tι, σιK. For a control state b ∈ B,
let Location(b) be the valuation of the robot location variable in
b. Let φ′ be a regular or ω-regular language over sequences of
control locations in B, such that a sequence b0, b1, . . . ∈ Φ′ iff
Location(b0), Location(b1), . . . ∈ Φ.

Then, the robot model-checking problem is equivalent to the
BTS model-checking of B and φ′.

Battery vs. ideal energy. Model-checking the robot behavior, tak-
ing into account the non-ideal aspects of the energy resource, is in-
herently different from considering the battery as an ideal energy
resource, as demonstrated in Example 17. There, the robot cannot
go with an initial battery status of (16, 16) from location (1, 1) to
(3, 2) (cf., Theorem 3.) On the other hand, it is possible to go from
location (4, 4) to (3, 4), starting with the same initial battery status.
Note that such a situation is impossible with a model that is based
on an ideal-energy resource, as the energy loss going from location
(4, 4) to (3, 4) is 15, while from location (1, 1) to (3, 2) it is only
14! (The reason, as elaborated on in Sections 2–3, lies in the influ-
ence of the energy changes along the path on the available charge
of the battery.)

7. Conclusions and Future Work
We presented the first discrete formal model of battery systems and
showed that the standard automaton emptiness problems for this
model are decidable. Further, these battery transition systems do
not fall into the large class of well-structured transition systems.

In terms of future work, a natural direction is to explore stan-
dard program analysis and program synthesis questions for systems
that use batteries. For example, to begin with, one could define an
extension to standard imperative languages to allow programs to
branch based on the status of the battery. For programs written in
such a language, one could attempt to compute invariants about the
combined program- and battery-state through abstract interpreta-
tion. Also, one could attempt battery-aware partial-program syn-
thesis for such a language. This would be a generalization of the
battery-aware scheduling problem studied in [18]. Another direc-
tion to explore is the possibility of solving two-player games for
battery transition system, leading to battery-aware algorithms for
synthesis of reactive systems.
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